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The University of Nebraska‐Lincoln (UNL) has been upgrading its laser facility to 

increase its power rate by a factor of ten. The project comprised the construction begun 

in 2008 at the UNL Extreme Light Laboratory of a high‐energy laser system that is 

capable of delivering a peak power of one petawatt, which will make it the highest 

combination of peak and average power in the U.S. This project also featured a 

reduction of the laser pulse duration. The project also supported applications of the 

laser, some of which are funded by other DoD agencies, to improve the quality of 

laser‐driven electron beams and gamma rays, integrate radiation sources with suitable 

detectors and imaging techniques, and develop techniques for imaging through dense 

thicknesses of steel.  

The central feature of the proposed laser upgrade project was the development of a 

petawatt high‐energy laser amplifier, by the addition of a multi-pass amplifier and a 

pulse compression system for the amplified laser pulse. The layout of the complete 

laser system is shown in Figure 1. The original system comprised of an oscillator, 

stretcher, and 4 multipass amplifiers produced 5-J per pulse at 10-Hz repetition rate. 

The amplified pulse was compressed to 30-fs pulse duration in a standard two-grating 

pulse compressor and resulted in a peak power of >100 TW. The laser system has 

been upgraded to the 1-PW peak power level with an additional power amplifier and 

pulse compressor. The upgrade to the system consists of the following: (a) high-energy 

pump lasers, (b) power amplifier, (c) pulse compressor, and (d) diagnostics. The 

specifics of each are provided in detail below. 

Once amplified and compressed, the light is transported to the target chamber and 

alignment assembly by means of the beam transport optical assembly. A 

characterization of the beam takes place in the diagnostic assembly, which is composed 

of photodiodes, ccd cameras, control computers, energy meters, spectrometer and 

autocorrelator, image plate and reader. 

An optical protection system for the laser system, which prevents catastrophic damage 

to the amplifier by accidental bandwidth collapse, was designed, installed, and 

successfully integrated.  

At the 100-TW laser power level, the energy of the laser-wakefield accelerated electron 

beam was increased to 0.8 GeV while maintaining the qualities of the lower energy 

beams (e.g., low angular divergence: 2 mrad).  The electron and x-ray detection 

systems were cross-calibrated by means of an absolutely calibrated beam from a 

conventional accelerator.   
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spectral phase control system which is optimized to pre-compensate for gain narrowing 

in the power amplifiers and ensure the broadest spectrum at the output. This condition 

ensures that the pulse can be compressed to <30 fs. The energy of the beam is 

measured with standard, calibrated calorimeters. The pulse compressor output is 

optimized by using a second order autocorrelator to measure the temporal duration, an 

optical imaging system to correct for phase front tilt and a FROG device to measure and 

optimize the temporal phase of the beam.  

 

How were awarded funds spent each year by objectives/outcomes?   

$2,648,910 expended 

Development of a high-energy laser amplifier:   $461,010 

Year 1: Design of 2-pass Ti:Sapphire amplifier   $64,900 

Year 2: Ordering of parts for 2-pass Ti:Sapphire amplifier   $89,000 

Fabrication of compressor system   $460,000 

Purchase of four high-energy, high repetition-rate, frequency-doubled Nd Glass lasers, 

delivered 2009   $1,574,000 

 

How did this project expand the laboratory’s research and service capability or 

capacity? 

This project has enabled us to create five high-quality, high-paying, cutting edge jobs 

and hire three postdoctoral fellows and two technicians. It also has established UNL as 

an international leader in an innovative area of science – helping to put the State on the 

map as a player in high-tech research. 

The high-energy laser system at the Diocles Extreme Light Laboratory at UNL is 

capable of delivering a peak power of 1 petawatt. This is critical to the enhanced 

development and performance of laser-driven radiation sources used for detection, 

inspection, and non-destructive testing. The ability of penetrating radiation sources to 

address these needs depends on several characteristics, such as energy, brightness, 

average power, and portability. All of these characteristics can be enhanced with 

improvements in the methods used to produce the radiation, and by enhancements to 

the drive lasers. All of the techniques will benefit from the new laser amplifier. The most 

immediate result will be the dramatic improvement of the brightness and quality of the 

laser-driven electron beams and x-rays, with applications for detecting cracks in aging 

critical components and detecting special nuclear materials through large thicknesses of 



shielding. Thus, the project will has significant synergy with, and create leverage for, 

both the existing DARPA/AFOSR grant on hyperspectral radiation and DHS grant on 

SNM detection.    

 

Cumulative lists of people involved in the project: 

Donald P. Umstadter  

Sudeep Banerjee 

Kevin J. Brown 

Nathan Andrew Chandler-Smith 

James V. Kayser 

Suman Bagchi 

Chakra M. Maharjan 

Jun Zhang 

Kun Zhao 

Laila A.  Gharzai 

Frank M. Lee 

Jeffrey A. Thomas 

Melissa D. Zephier 

Bertram M. Gay 

 

How has this funding been leveraged to continue the project or resulting 

research?  

 Defense Threat Reduction Agency, “Compact Source of Laser-Driven 

Monoenergetic Gamma-Rays” --$2,982,685 

 National Science Foundation, "High-Power Laser Science Collaboratory" --

$1,825,345 

 Defense Advanced Projects Agency, “Research and Development of a High-Power-

Laser-Driven Electron-Accelerator Suitable for Applications, Phase II” -- $899,823  

 Domestic Nuclear Detection Office, Dept. of Homeland Security, “Tunable, 

monoenergetic x-ray source for identification of embedded SNM,” Phase II-- 

$899,000 

 Domestic Nuclear Detection Office, Dept. of Homeland Security, “Tunable, 

monoenergetic x-ray source for identification of embedded SNM,” Phase III-- 

$1,133,848 

 Congressional Add (PLUS, AFOSR), “ High-Energy Laser detection, inspection, and 

non-destructive testing phase”,-- $ 4,759,860.00 
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